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On Vlasov-Manev Equations, II:
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We prove that the initial value problem associated with the Vlasov-Manev
system (a Vlasov equation in which a correction of type i:/r2 is added to the
Newtonian or Coulomb potential) has a local in time classical and unique solu-
tion for sufficiently regular initial data.

1. INTRODUCTION

This is the second in a series of papers in which we discuss kinetic equa-
tions where a correction to the Coulomb potential of type e/r2 is added; in
part I [BDIV], we referred to such corrections as corrections of Manev
type, in reference to the Bulgarian physicist Manev who studied such
potentials [ Ma1-4 ] in the 1920s. We are in particular interested in a
generalization of the stellar dynamic equation of the type
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with p = J f dv, and
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Here, N is the dimension of the space (in part I we used N= 3 throughout);
by a formal partial integration, E2 can also be written as a multiple of the
Riesz transform of p.

Let f0(x, v) be a sufficiently regular density distribution function. Our
objective is to prove that the initial value problem associated with (1.1)
then has a local classical and unique solution. We mention here that our
proof applies to the stellar dynamic case as well as the cases where the
forces are repulsive, or where one of the forces given by (1.2) and (1.3) is
repulsive and the other is attractive (i.e., where one or both of the minus
signs on the right are changed to plus signs). These cases may be of some
interest in plasma physics or electron flow in semiconductors.

We mention here that if e = 0, (1.1-2) becomes the classical stellar
dynamic equation, which was solved locally in time by R. Kurth in 1952
[ K ] and globally in the radially symmetric case by Batt in 1977 [ B ]. Since
then, general global solvability has been established; see the references in
[ BDIV ]. As we showed in BDIV, general global solvability does not apply
when £ > 0.

In Section 2, we present the estimates on the fields E1 and E2 from
(1.2) and (1.3) which enable us to prove a local existence result. Section 3
contains estimates on solutions of approximating mollified problems, in
which the singularities in (1.2) and (1.3) are mollified. In Section 4, we send
the mollification parameter 6 to zero and use compactness properties to
extract a local solution of our initial value problem. Finally, in Section 5, we
show that the solution is unique if the initial data have enough regularity.

The key observation in the analysis is that the Manev potential does
not improve on the regularity of the Newtonian potential, obtained by con-
volving with the classical Poisson kernel, but does not compromise it either.
The nature of the singularity in the Manev correction means that we must
seek solutions whose densities possess Holder continuous spatial gradients,
and this is the main novelty arising in the analysis. The most technical
feature of the existence analysis is to show that Holder continuity of the dis-
tribution and its density is maintained at least locally in time with no
deterioration in the Holder exponents. For this, the Holder continuity of the
particle trajectories with respect to initial states must be carefully studied.

In the appendix we sketch proofs of some known but crucial estimates
on which our analysis depends. These estimates are listed in the following
section.

2. SOME ESTIMATES

Let  w( t ,x ) :=E\_p] ( t ,x ) :=E1[  p  ] ( t ,x )  +  E2[p] ( t ,x ) .  We sha l l  need
the following estimates, all of which are available in various spots in the
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literature. For the convenience of the reader, we sketch proofs of these
estimates in the appendix. All norms for w and p are with respect to the
.x-variable.

A. Uniform estimate on w:

(the norms on the right are on IR2 N);
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B. Uniform estimate on Vw:

C. Holder estimates:

If p e (N, oo) is such that a = 1 — (N/p), then

and

In view of these estimates, we will need to control the following norms
and seminorms of p = j f dv:

Recall that all Lp-norms of p and Vp can be bounded in terms of the
L^-norm and the L1-norm, by straightforward interpolation.

The following interpolation estimates, whose proofs are also sketched
in the appendix, give bounds on the norms from (A)-(E) in terms of the
function / The symbol CON denotes the surface measure of the N-dimen-
sional unit sphere. For (C) and (D),

For Then

and
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For (E),

3. ESTIMATING SOLUTIONS OF MOLLIFIED EQUATIONS

It is well known that Vlasov equations with smoothed potentials
admit global classical solutions, and these results readily generalize to the
stellar dynamic Manev equation (1.1). Specifically, if we denote by ws

C^-approximations of unity such that ws * f -> f as S -> 0, let

and

The mollified potential Us, and hence the mollified field Es, are C00 for
p e L°° n Ll, and 6- dependent bounds on the L°°-norms of Vs and Ed and
their derivatives apply. Note that the mollifier in (3.1) can be thought of as
acting on p or on the potential kernel—in view of the associativity of the
convolution, the result is the same.

It follows that the estimates from Section 2 carry over, uniformly with
respect to 5, to the mollified case. Our strategy to solve the system (1.1-3)
will be based on proving uniform estimates on solutions of the mollified
problem; for simplicity, we shall delete the index S, but it will implicitly be
assumed in the rest of this section that/ = /5 will be a (global and unique)
solution of the initial value problem for (1.1-3), with the Ei's replaced by
the Eoi's.

For a function f(t, x, v) defined on [0, T ] x R"x RN, let



i.e., Yf(t) is simply the largest value any of the relevant (semi-)norms of f
has assumed until time t.

Think of fas a solution of the mollified initial value problem, and of
p = ps as the mollified spatial density associated with this f The function
w defined in Section 2 can then be estimated in terms of Yf(t). Let
Yf = sup0^,<r Yf(t). In what follows, L,(/), /=1 ,2 ,3 , . . . will denote
positive, non-decreasing differentiable functions of a variable /,, possibly
depending on T (but not on S). The estimates from Section 2 assert that
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and L,^OK £,(>/) for /=!,..., 4.
Our first and most important objective is to obtain uniform bounds

(with respect to S) on the function Yf(t) on some time interval [0, T]
which may depend on the initial values.

We begin by studying the characteristic equations associated with the
(mollified) equation (1 .1 ) . They are

Here and in the sequel, we abbreviate Q = (x, v). Integral versions of (3.7)
are

or equivalently,

We shall abbreviate P(x; t, Q) = (X(s; t, Q), V(s\ t, Q)) for the solutions
of (3.8) with P0(t, Q) := P(0; t, Q). We need expressions and estimates
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for the partial derivatives of P with respect to t, x, and v. We have

and

In differential form,

where

and

The above representations lead to the following.
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Lemma 3.1. If w(x,t) is sufficiently smooth, then

Proof. The above representations for V and its derivatives readily
imply that

A similar conclusion holds for X(s; t, Q). (3.10) follows from an application
of Gronwall's inequality. |

Proposition 3.2. Letf = fs be the solution of the mollified initial
value problem, and let w = w[ps] be as in Section 2. Then there exists a
unique solution P(s; t, Q) of the characteristic equations (3.7). This solu-
tion is continuously differentiable with respect to all the variables. For any
fixed t and s, X(s; t, Q) and V(s; t, Q) constitute a one-to-one and measure
preserving map of U2N into itself, with Jacobian 1. Furthermore, we have

Proof. All of the above assertions are straightforward consequences of
Gronwall's inequality in conjunction with the estimates from Section 2. |

For later estimates involving Holder semi-norms we need to control
P(s; t, Q)-P(s; t, Q') in terms of Q- Q'. This is the purpose of the next
lemma.

Lemma 3.3. Suppose that 0 ̂  s < t. Then
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Corollary 3.4.

In view of (2.2) and (3.9) this means that the left-hand side of (3.13)
is controlled in terms of the IHloo, | | - | | i and | • | a>A, (semi-) norms of p and
V/p; these, in turn, are estimated by (2.5)-(2.7).

Proof (of Lemma 3.3.) For 0 < ,s < t,

Hence

and the assertion follows by Gronwall's inequality. |

We next specify the necessary regularity assumptions for the initial
value f0. Specifically, we assume that there is an rj>N such that

Under these conditions, we have the following.

Proposition 3.5. The classical solution of the mollified initial
value problem is given by

Furthermore,

remains bounded.
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Remark. The assertion of this proposition holds on any time inter-
val, but the bounds may depend on the time T and on the mollification
parameter 5. Our principal objective is to show that for T small enough,
uniform bounds with respect to S can be obtained.

Proof. Except for the last assertion, everything stated here is well-
known. The boundedness assertions follow from the representation (3.15)
and the estimates in (3.11). |

The next theorem is the most important result in this paper inasmuch
as it supplies the relevant tools for a proof of local existence. C(f0) denotes
constants which depend only on f0; they can be different in different
formulas. We denote by D the gradient Vp. QT is a shorthand for
[0, T] x R2N, and B°, 1 + a (3 T ) is the space of functions which are a-Holder
continuous with respect to time, differentiable with respect to Q = ( x , v ) ,
and whose gradient with respect to Q is Holder continuous with exponent a.

Theorem 3.6. For f as in (3.15), we have the following identities
and estimates:

Df is also Holder continuous with exponent a with respect to t, and the
following stronger version of (3.19) holds:

Furthermore, we have that

and

Proof. The first assertion in (3.16) is immediate from (3.15). The
second assertion is a consequence of Proposition 3.2.
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In preparation for (3.17) and (3.19), we next work on velocity decay
estimates for f and Df. Let x(t, Q) :=(1 + \v\2)"/2 f ( t , Q). x satisfies the
equation

which implies an estimate

By Gronwall's inequality,

which entails (3.17). Turning to the derivative, we define

Roughly speaking, the quantity £ measures the influence of large velocities
on the non-temporal derivatives of f. A formal, straightforward derivation
yields the following inhomogeneous Vlasov type equation, which is solved
in the mild sense by £:

where A is the matrix given before Lemma 3.1 (in 3.9); the superscript t
denotes transposition.

We integrate (3.24) by the method of characteristics, with the initial
value £(0, •) = (1 + |M|2)n/2 Df0. We find

If £(s, P(s; t, Q)) is sufficiently smooth, the total ^-derivative (Lagrangian
derivative) is equal to the right hand side of (3.24), evaluated at (s, P(s; t, Q)).
An expression for £(t, Q) in terms of £(r, P(r; t, Q)) is obtained by setting
s = t in (3.25):
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Equation (3.26) is a weak formulation of (3.24) inasmuch as solutions of
(3.24) will satisfy (3.26); conversely, by Lemma 3.1, sufficiently smooth
solutions of (3.26) will solve (3.24).

The representations (3.25) and (3.26) of £ allows us to obtain uniform
estimates on £ by a linear Gronwall argument:

We conclude

proving (3.19).

Proof of (3.20). Note that the differential equation satisfied by
Df(t, Q) follows from (3.24) by setting ^ = 0. Just as for £(t, Q), we need
information about Df(s,P(s;t,Q)), which is equal to Df(t, Q) for s = t.
For s^t, Df(s, P(s; t, Q)} satisfies

with D/|,_0 = Df0.
The vector field Df(s, P(s; t, Q)) can therefore be written as a solution

of the integral equation

and by Gronwall's inequality, with t, Q considered as parameters,

By setting s = t, we find
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In the sequel, we use the elementary inequality

which holds for x, x' e RN. By (3.31), (3.30) and (3.15), it follows that

where in the last estimate we took advantage of (3.8) and (3.31). The
estimate (3.20) is now immediate from (3.32), and we have also obtained
(3.19a).

Proofs of (3.18), (3.21) and (3.22). To this end, we need infor-
mation about the Holder continuity of Df(s, P(s; t, Q)) and £(s, P(s; t, Q))
with respect to s, t and Q= (x, v). Let t' > t. Then

and similarly for ( D f ) ( t , Q). We also consider

We investigate the behavior of the expression on the left-hand side of
(3.33); an estimate on (Df) ( t ' , Q ) - ( D f ) ( t , Q) will follow, due to the fact
that
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By Gronwall's inequality, we conclude from (3.33) that

For /, we write

so this term is actually Lipschitz continuous with respect to t.

We use the properties of the Manev forces and the Hormander lemma
(see the appendix) to estimate //. We can estimate
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(Eq. (3.11) has been used in the second to last line). It follows that

bounding the Holder semi-norm of Df with respect to time.

We next show Lipschitz continuity of f with respect to t; together with
the subsequent proof of (3.21), this will prove (3.18).

To prove Holder continuity of Df(t, Q) with respect to x and v, we set
Q = ( x , v ) , Q' = (x', v'), and write

Dividing (3.38) by |Q-Q'|", we find
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By Corollary 3.4 we have

and by Gronwall's inequality supo^^^, \Df(s, P(s; t, •))!«,a;v is bounded in
terms of

and sup0<SJ<, \Dw(s,.)\^ff. As Df(s, P(s; t, Q)}\s=t = Df(t, Q), we get in
particular control of the Holder semi-norm of Df(t, •). This proves (3.21).

We finally investigate the Holder continuity of £(t, x, v), needed for
(3.22). Recall that

with
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It is necessary to study £(.v, P(s; t, Q)), which satisfies (3.25), i.e.,

From the assumptions on the initial value, and the estimates (3.11), it
follows that

Holder continuity of £(s, P(s', t, x, v)) with respect to t also applies and is
obtained as follows. The usual Gronwall analysis yields

The properties of the Manev force term A'(T, X ( r ; t, Q)) in the integrand of
the second term on the right hand side lead, as in the estimate (3.36), to
an upper bound

by (3.41). The first term on the right of (3.42) is estimated by

by an argument similar to the proof of Lemma 3.3 and (3.14). Holder
continuity of £(s, P(s; t, Q)) with respect to t follows.

The final step before us is to prove Holder continuity of £(.v, P(s; t, Q))
with respect to Q = (x, v). This is done in a way similar to the proof of
Holder continuity of Df(s, P(s; t, Q)}: We write
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Holder continuity now follows as for Df(s, P(s; t, Q)): By the properties of
the Manev force terms, and by Corollary 3.4,

where we have used the mean value theorem and Z is a point on the line
connecting Q and Q'. In view of (3.12) and (3.10), this last expression
is bounded by L21( Y f ( t ) ) \ \ Q - Q'\\, hence even Lipschitz-continuity with
respect to Q holds for this term. The assertion (3.22) follows by collecting
terms. |

The function Yf(t) defined by (3.2) satisfies a Gronwall inequality,
obtained by suitably combining those for estimating the right-hand sides of
(2.5)-(2.7). The proof of Theorem (3.6) indicates how such inequalities are
obtained from equations (3.24), (3.25), (3.28)-(3.29) and (3.38)-(3.39).

By collecting all these estimates together, we arrive at

Theorem 3.7. There is a C>0 and a smooth, monotone increasing
function G: [0, oo) -» [0, oc), independent of 6, such that

Hence, if £ ( t ) is the unique local solution of the initial value problem

and



642 IIIner et al.

it follows that

The estimate (3.44) implies local-in time uniform control on all the relevant
(semi-)norms of the mollified problems (recall that/ = /'', where 5 is the
mollification parameter). We use these estimates in the next section to
prove the existence of a local solution.

4. EXISTENCE OF A LOCAL SOLUTION

Choose a T>0 such that 0<T<Tm, where Tm is such that
l imr^r £(r) = oo. We set A0 = £(r). Observe that A0 is uniquely determined
by r\ and/0, i-e-> the data and its decay properties. We now consider the
family {fd(t, Q): (t, Q)eQT}. The following lemma will be essential in the
subsequent analysis.

Lemma 4.1. Let gs be a family of functions which is equicon-
tinuous and uniformly bounded on QT. Moreover, suppose that for every
ft>Q, there is an R>Q such that for all <5>0 and for (t, Q)eQT with
\Q\>R,

Then there is a subsequence of gs which converges uniformly on QT.

Proof. This follows from the classical Arzela-Ascoli Theorem and a
standard diagonalization argument.

Theorem 4.2. (Convergence off6.) The family {/•*} of solutions
of mollified Vlasov-Manev equations with the initial value /0 satisfies the
conditions of Lemma 4.1 on QT.

Proof.  From Theorem 3.6,  we see that

These estimates show uniform boundedness and equicontinuity with
respect to the spatial and momentum variables. So all we have to show is
equicontinuity with respect to /, and that for every // > 0, 3R > 0 such that
uniformly in d
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We first show (4.1). Recall that f\t, Q) = f0(Ps0(t, Q)} (we have added
the index 6 to the flow to emphasize the ^-dependence!). Hence

where we have used that

(see (3.8)) and the uniform control on the integrals in terms of various
norms of f6, i.e., in terms of ((7). Equation (4.1) follows immediately.

The uniform estimates on the force fields, as given in Section 2, and
the uniform control on the derivatives Dfd in terms of £(/), imply equicon-
tinuity in t (it simply follows from the mollified equations that {(d/dt) f6}
is uniformly bounded on QT). This completes the proof. |

It follows that we can extract a subsequence of {fs}s>0, again
denoted by {f6}, which will converge uniformly to a limit/, clearly the
candidate for a solution. To show that/solves the Vlasov-Manev system
(!.!)-(1.3), we have to obtain uniform bounds and decay estimate on Df6.

We already know from Theorem 3.6 that

which gives uniform boundedness (and decay in v) for Df6. In fact, we also
have uniform Holder continuity of the functions Dfs, with respect to /
and Q, by (3.21) and (3.37). The decay estimates follow from (3.32). It
follows that we can extract a uniformly convergent subsequence from Df6,
with a continuous l imit  g on QT, and as fs->f,  we conclude g=Df,  and
D/is continuous.

We next address convergence of the fields, Es -> E. Note that the
estimates of E [ p s ] ( t , x) — E[p~\(t, x) which arise from (2.1) do not require
Holder continuity of p6 or p\ We must, however, examine the convergences
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which will entail the desired convergence E6 -»E in Lm.
The estimates (i) and (ii) are consequences of the Lebesgue dominated

convergence theorem and (3.32). To show that E(t, x) is continuous in /
uniformly with respect to x, we need to show in addition that \\fs(t, - ) | | ,
and \\Dfs(t, - ) l l i are equicontinuous on [0, T~\. The convergences (i)-(iv)
and these equicontinuities are sufficient to show that E(t, x), defined as
E [ p ~ \ ( t , x ) , is the uniform limit of the approximate fields Es in the sense
that

and that \\E(t, - ) \ \ x is indeed continuous.
Concerning \\fs(s, • } — f s ( t , •)! i, we write

and by Theorem 3.6 the last product is

By Proposition 3.2,
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hence

This estimate implies equicontinuity of \\f6(s, - ) | | ] with respect to 5 on
[0, 7]. In particular, ||/(s, •)-/('.•)|| { ->0 as t-> s.

The corresponding result for || Dfs(s, •) ||: requires some additional
analysis, which we provide in several steps.

First, the inequality preceding (3.30) and (3.32) imply

in view of the assumptions on/0. So the first term on the right of (3.34),
when integrated with respect to Q, yields a term O(\t — t ' \ ) , and this is
uniform in S due to the a priori estimates on \\A'(t, - J l l o o - For the second
term in (3.34), focus on (3.35) and its estimate on

The L'-bound on \Df0(P*0(t, Q))-Df0(P
s
0(t', Q))\ is done just as in the

earlier treatment of/„(/>£(/, Q)) -fo(Pd
0(t', Q)). The second integral on the

right of (3.35)—when integrated—will yield a term of the type |/ — ?'|a by
our previous estimates on Dfs(s, Ps(s\ t, Q)) (see above) and the estimate
used in (3.36), i.e.,

In conclusion,

is equicontinuous in s, uniformly in S; it follows that

We next consider the families
as
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and

{x6} is uniformly bounded by the estimates preceding (3.23), and
uniformly equicontinuous in Q because of the boundedness of £6. We have
to check equicontinuity in t, uniformly in Q. To this end, note that

The first and third terms on the right are uniformly bounded by our pre-
vious estimates. As for the term v-V%s, note that by (3.30)-(3.33) and by
(3.14)

Hence |(1 + M2)( 1 +"> / 2 Df(t, Q)\ < C(/0) L(£(T)), t? • V,/is bounded,
and uniform boundedness of d,^, hence equicontinuity of {/'*} with
respect to t, follow. We conclude that there is a subsequence of {xs} which
converges uniformly on QT to its pointwise limit (1 + \v\2)r>12 f ( t , Q).

We have succeeded in extracting a subsequence of {fs} such that the
convergences (i)-(iii) hold. For (iv), we analyse {£,s(t, Q): (t, Q)eQT}. By
(3.27), {£*} is uniformly bounded on QT, and by the discussion following
(3.42), we have equicontinuity. <5-uniform decay with respect to x and v was
established in (3.41).

With these observations, a subsequence of {£**} converges uniformly
to its pointwise limit (1 + \v\2)"/2 Df in QT, and we conclude that Ed -> E
uniformly on [0, T~\ x Kf.

The limiting function / is a classical solution of the Vlasov-Poisson-
Manev system (1.1)-(1.3) for the initial value /„. We have shown the
following.

Theorem 4.3. Suppose that /0 satisfies the conditions (3.14). Then
there is a time interval [0, T^), T^ < oo, such that the Vlasov-Poisson-
Manev system (1.1)-(1.3) with the initial value f0 has a classical solution
on [0, Tm).

Remark. As discussed in part /  of our work [BDIV], Tm is in
general finite and will depend on/0. The above theorem is therefore a local
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theorem. We also showed in part I that the solution in the "pure" Manev
case }' = 0 will exist globally for certain data if local solutions exist (see
Section 3 of [BDIV]).

5. UNIQUENESS

If we require slightly more regularity from the intial value /„, the solu-
tion given by Theorem 4.3 is unique in its class. Specifically, suppose that

The analysis of the previous two sections shows that a solution will
possess the extra regularity in its second derivatives. Suppose that f and f
are two solutions associated with the initial value f0, with / denoting a
common interval of existence. The relevant forces are

with

For the derivatives, we have

and the velocity moments y_A(i, Q) : = ( 1 + \v\2}"12 A(t, Q) and £ A ( t , Q): =
(1 + v\2')i/2 Dsl(t, Q) are determined by
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and

As before, we must control the growth in time of the quantity

The following are the controlling estimates, which follow readily from
(5.1)-(5.5) (the one for |(1 + \v\2)"12 DA(s, - ) \ X i 2 N is not displayed, but is
similar to the one for \DA(s, • )|aj2;v):
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(from (5.5)). Finally, we must control the growth of a Holder semi-norm.
We provide the inequality for \DA(t, • ) |a>2Ar. The one for \£A(s, •)\^2N 's

similar.
We have to follow the methodology from Section 3, which takes into

consideration the Holder continuity of the trajectories with respect to the
phase space variables (x, v). From (5.3), and with the help of (3.13), we
find

From these estimates, it follows similarly to the reasoning in Section 3 that
YA(t) satisfies an estimate
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with a smooth monotone increasing nonnegative function G such that
5(0) =0. It follows that Os: Y j ( t ) ^ £ ( t ) , where I is the solution of the
initial value problem

with norm 11-11*= Hi + INL+H.-

A. Proof of (2.1.). Estimate

By choosing R= \\p\\ ~1/Ar \\p\\\/N (which minimizes the r.h.s. as a function
of R), the first part of the estimate (2.1) follows. Repeating the same steps
for w2 as given by (1.3) completes the proof.

B. Proof of (2.2,). Write Dw = Dwl +Dw2, and estimate the two
terms separately. As above, we break up the integrals defining Dwl (in this
calculation, think of Dw\ as any partial derivative of any component of H>,):

But the smoothness of G implies that C = 0, hence Y^(t) = 0 on its interval
of existence. Uniqueness follows. |

APPENDIX. PROOFS OF THE ESTIMATES FROM SECTION 2

As before, /(?, x, v) denotes a density distibution function, N is the
dimension of physical space (typically N = 3),/>(?, x) = \ f ( t , x, v) dv, and w
is as defined in Section 2. We also abbreviate wi(t ,  x) = El[p~\(t ,x) and
w2(t, x) = E 2 [p]( t , x). We will suppress the dependence on t in order to
simplify the notation. All norms are with respect to the spatial variables. By
X we denote the space
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J2 is estimated, as in the previous proof, by

As for j1, we integrate by parts (i.e., use the divergence theorem) and find

The integral in the first term on the right is further decomposed as

Collecting terms, we find that for all d 2>d 1>0,

This completes the estimate for Dw1 .

and by using that we have

thenNow let
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As for the "Manev" term Dw2, the p = oo modification of the classical
Calderon and Zygmund argument (see [St] and [Ta]) entails that we
have an estimate

Combining the estimates for Dw1 and Dw2 and observing that
(l + H V / J l i ) ' J l , we have

This completes the proof of (2.2).

C. Proofs of (2.3) and (2.4). These estimates are consequences
of Hormander's Lemma (see [H]) which we state here for the sake of
completeness.

Hormander's Lemma [H] . Assume that the convolution kernel
k e Cc o(UN — {0}) is homogeneous of degree —N/fi, and suppose that
p> [1, oo] is such that £ :=N(1 -I/?- 1/p) e (0, 1). Then

To prove (2.3), set 0 = N/(N- 1); then £ = 1 -(N/p)e(0, 1) if p>N,
and Hormander's Lemma entails that

(2.3) follows immediately.

For the proof of (2.4), consider |Dw|a. As before, write w = w1 + w2,
where Dwl is represented by
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Hence, by Hormander's Lemma,

Let Tf(x) = \\x-y\-N-l(x-y)f(y)dy, and let Sx denote the shift
operator by x. Following the p = co Calderon-Zygmund argument for w2,
we have

It is known [Ta] that \TVp\x is bounded in terms of \Vp\x (for 0«x< 1).
Therefore,

and

readily follows. This completes the proof of (2.4).
It remains to sketch proofs for the interpolation estimates (2.5) to

(2.7). For (2.5), an integral decomposition works as follows (we will
continue to suppress the time variable):

(2.5) follows by choosing R= ||(1 + \v\2)'l'2 f\\^ \\f\\ ~l/ri. Exactly the same
argument applies for (2.6).

To prove (2.7), we apply the above estimate to (Sh — I) Vp:
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Estimate (2.7) then follows after multiplying both sides by \h\-a and taking
suprema with respect to h.
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